PostgreSQL vs MongoDB: How I Decide What to Use (With Real Examples)
A practical guide to choosing between PostgreSQL and MongoDB based on real project requirements, not just hype or habits.
After using both PostgreSQL and MongoDB in production for years, I've developed a simple framework for choosing between them. No religious wars, no cargo-culting—just practical decision-making based on your actual needs.
The Short Answer
Here's my default decision tree:
Does your data have clear relationships? → PostgreSQL
Is your schema constantly changing? → MongoDB
Need complex queries and aggregations? → PostgreSQL
Storing JSON blobs or logs? → MongoDB
Need ACID transactions? → PostgreSQL
Building a CMS or flexible data model? → MongoDB
Want mature tooling and ecosystem? → PostgreSQL
Need horizontal scaling from day one? → MongoDB
But real projects are nuanced. Let me show you how I actually decide.
When I Choose PostgreSQL
PostgreSQL is my default choice. Here's why and when.
Use Case One: E-commerce Platform
The requirement: Build a product catalog with inventory, orders, and user accounts.
Why PostgreSQL:
-- Products have clear relationships
CREATE TABLE products (
id SERIAL PRIMARY KEY,
name VARCHAR(255) NOT NULL,
price DECIMAL(10, 2) NOT NULL,
stock INTEGER NOT NULL,
category_id INTEGER REFERENCES categories(id)
);
CREATE TABLE orders (
id SERIAL PRIMARY KEY,
user_id INTEGER REFERENCES users(id),
total DECIMAL(10, 2) NOT NULL,
status VARCHAR(50) NOT NULL,
created_at TIMESTAMP DEFAULT NOW()
);
CREATE TABLE order_items (
id SERIAL PRIMARY KEY,
order_id INTEGER REFERENCES orders(id),
product_id INTEGER REFERENCES products(id),
quantity INTEGER NOT NULL,
price DECIMAL(10, 2) NOT NULL
);
-- Complex queries are easy
SELECT
p.name,
SUM(oi.quantity) as total_sold,
SUM(oi.quantity * oi.price) as revenue
FROM products p
JOIN order_items oi ON p.id = oi.product_id
JOIN orders o ON oi.order_id = o.id
WHERE o.created_at > NOW() - INTERVAL '30 days'
GROUP BY p.id, p.name
ORDER BY revenue DESC
LIMIT 10;What this gives me:
- Referential integrity (can't create order for non-existent product)
- ACID transactions (inventory decrements happen atomically)
- Complex reporting queries
- Data consistency guarantees
Real project: An online bookstore I built handles 10,000+ orders/day with zero inventory discrepancies thanks to PostgreSQL's transactions.
Use Case Two: SaaS Application with Multi-Tenancy
The requirement: Multiple organizations, each with users, projects, and tasks.
Why PostgreSQL:
-- Clear hierarchy and relationships
CREATE TABLE organizations (
id SERIAL PRIMARY KEY,
name VARCHAR(255) NOT NULL,
plan VARCHAR(50) NOT NULL
);
CREATE TABLE users (
id SERIAL PRIMARY KEY,
email VARCHAR(255) UNIQUE NOT NULL,
organization_id INTEGER REFERENCES organizations(id)
);
CREATE TABLE projects (
id SERIAL PRIMARY KEY,
name VARCHAR(255) NOT NULL,
organization_id INTEGER REFERENCES organizations(id)
);
CREATE TABLE tasks (
id SERIAL PRIMARY KEY,
title VARCHAR(255) NOT NULL,
project_id INTEGER REFERENCES projects(id),
assigned_to INTEGER REFERENCES users(id),
status VARCHAR(50) NOT NULL
);
-- Row Level Security for data isolation
ALTER TABLE tasks ENABLE ROW LEVEL SECURITY;
CREATE POLICY task_isolation ON tasks
USING (
project_id IN (
SELECT id FROM projects
WHERE organization_id = current_setting('app.current_org_id')::INTEGER
)
);What this gives me:
- Perfect data isolation between tenants
- Complex permission queries
- Audit trails via triggers
- Consistent data model
TypeScript integration:
// With Prisma
const tasks = await prisma.task.findMany({
where: {
project: {
organizationId: user.organizationId,
},
assignedTo: userId,
},
include: {
project: {
include: {
organization: true,
},
},
assignedUser: true,
},
});Real project: A project management SaaS with 500+ organizations, zero data leakage incidents.
Use Case Three: Financial Application
The requirement: Track transactions, balances, and generate reports.
Why PostgreSQL (and nothing else):
CREATE TABLE accounts (
id SERIAL PRIMARY KEY,
user_id INTEGER REFERENCES users(id),
balance DECIMAL(15, 2) NOT NULL DEFAULT 0,
currency VARCHAR(3) NOT NULL
);
CREATE TABLE transactions (
id SERIAL PRIMARY KEY,
from_account_id INTEGER REFERENCES accounts(id),
to_account_id INTEGER REFERENCES accounts(id),
amount DECIMAL(15, 2) NOT NULL,
status VARCHAR(50) NOT NULL,
created_at TIMESTAMP DEFAULT NOW()
);
-- Critical: ACID transactions prevent data corruption
BEGIN;
-- Deduct from sender
UPDATE accounts
SET balance = balance - 100.00
WHERE id = 1 AND balance >= 100.00;
-- Add to receiver
UPDATE accounts
SET balance = balance + 100.00
WHERE id = 2;
-- Record transaction
INSERT INTO transactions (from_account_id, to_account_id, amount, status)
VALUES (1, 2, 100.00, 'completed');
COMMIT;What this gives me:
- ACID guarantees (money never disappears)
- Consistency (balances always match transactions)
- Durability (data survives crashes)
- Isolation (concurrent transfers don't corrupt data)
You cannot build this safely with MongoDB's eventual consistency.
Real project: A payment processing system handling millions of dollars. PostgreSQL's ACID properties are non-negotiable here.
When I Choose MongoDB
MongoDB isn't just "NoSQL hype." There are legitimate use cases where it shines.
Use Case One: Content Management System
The requirement: Blog platform where post structure varies wildly.
Why MongoDB:
// Different post types with different fields
interface BlogPost {
_id: ObjectId;
title: string;
author: string;
publishedAt: Date;
tags: string[];
// Flexible content
content: {
type: "article" | "gallery" | "video" | "podcast";
// Type-specific fields
body?: string;
images?: Array<{ url: string; caption: string }>;
videoUrl?: string;
audioUrl?: string;
duration?: number;
};
// Flexible metadata
metadata: Record<string, any>;
}
// Easy to query
const posts = await db
.collection("posts")
.find({
"content.type": "article",
tags: { $in: ["javascript", "typescript"] },
publishedAt: { $gte: new Date("2025-01-01") },
})
.toArray();
// Embedded comments (no joins)
interface PostWithComments extends BlogPost {
comments: Array<{
author: string;
text: string;
createdAt: Date;
replies: Array<{
author: string;
text: string;
createdAt: Date;
}>;
}>;
}What this gives me:
- Schema flexibility (add new post types without migrations)
- Embedded data (no joins for comments)
- Fast reads (everything in one document)
- JSON-native storage
Real project: A multi-author blog platform where authors create custom post formats. MongoDB's flexibility was perfect.
Use Case Two: Analytics and Event Logging
The requirement: Store millions of user events with varying properties.
Why MongoDB:
// Events have wildly different shapes
interface Event {
_id: ObjectId;
userId: string;
eventType: string;
timestamp: Date;
// Everything else is flexible
properties: Record<string, any>;
}
// Insert is dead simple
await db.collection("events").insertMany([
{
userId: "user_123",
eventType: "page_view",
timestamp: new Date(),
properties: {
page: "/products",
referrer: "google.com",
device: "mobile",
},
},
{
userId: "user_456",
eventType: "purchase",
timestamp: new Date(),
properties: {
productId: "prod_789",
amount: 99.99,
currency: "USD",
paymentMethod: "card",
items: [
{ sku: "ABC123", quantity: 2 },
{ sku: "XYZ789", quantity: 1 },
],
},
},
]);
// Aggregation pipeline for analytics
const dailyRevenue = await db
.collection("events")
.aggregate([
{
$match: {
eventType: "purchase",
timestamp: { $gte: new Date("2025-01-01") },
},
},
{
$group: {
_id: {
$dateToString: { format: "%Y-%m-%d", date: "$timestamp" },
},
totalRevenue: { $sum: "$properties.amount" },
orderCount: { $sum: 1 },
},
},
{
$sort: { _id: 1 },
},
])
.toArray();What this gives me:
- No schema changes for new event types
- Fast writes (important for high-volume logging)
- Flexible querying
- Built-in aggregation framework
Real project: An analytics platform ingesting 100K+ events/hour. MongoDB handles the write volume and schema flexibility beautifully.
Use Case Three: Real-Time Chat Application
The requirement: Store messages, handle presence, sync across devices.
Why MongoDB:
interface ChatMessage {
_id: ObjectId;
conversationId: string;
senderId: string;
timestamp: Date;
// Flexible message content
content: {
type: "text" | "image" | "file" | "location" | "reaction";
text?: string;
imageUrl?: string;
fileUrl?: string;
fileName?: string;
latitude?: number;
longitude?: number;
emoji?: string;
reactionTo?: string;
};
// Delivery tracking
delivered: string[]; // User IDs who received
read: string[]; // User IDs who read
// Message metadata
edited?: boolean;
deletedAt?: Date;
}
// Change streams for real-time updates
const changeStream = db.collection("messages").watch([
{
$match: {
"fullDocument.conversationId": conversationId,
},
},
]);
changeStream.on("change", (change) => {
// Push to WebSocket clients
io.to(conversationId).emit("new-message", change.fullDocument);
});What this gives me:
- Change streams for real-time sync
- Flexible message types
- Embedded delivery tracking
- Fast writes for high message volume
Real project: A team chat app with 50K+ active users. MongoDB's change streams made real-time sync simple.
The Hybrid Approach
Sometimes the best answer is both. Here's when I use PostgreSQL and MongoDB together.
Real Example: E-Learning Platform
PostgreSQL for transactional data:
-- User accounts, enrollments, payments
CREATE TABLE users (
id SERIAL PRIMARY KEY,
email VARCHAR(255) UNIQUE NOT NULL,
subscription_tier VARCHAR(50)
);
CREATE TABLE courses (
id SERIAL PRIMARY KEY,
title VARCHAR(255) NOT NULL,
price DECIMAL(10, 2) NOT NULL
);
CREATE TABLE enrollments (
id SERIAL PRIMARY KEY,
user_id INTEGER REFERENCES users(id),
course_id INTEGER REFERENCES courses(id),
enrolled_at TIMESTAMP DEFAULT NOW()
);MongoDB for course content and progress:
interface CourseContent {
_id: ObjectId;
courseId: number; // References PostgreSQL
lessons: Array<{
id: string;
title: string;
type: "video" | "quiz" | "reading" | "assignment";
content: any; // Flexible based on type
duration?: number;
}>;
}
interface UserProgress {
_id: ObjectId;
userId: number; // References PostgreSQL
courseId: number; // References PostgreSQL
completedLessons: string[];
currentLesson: string;
quizScores: Record<string, number>;
notes: Array<{
lessonId: string;
text: string;
timestamp: Date;
}>;
lastActivity: Date;
}Why this works:
- PostgreSQL ensures payment and enrollment integrity
- MongoDB handles flexible course content
- PostgreSQL for complex enrollment queries
- MongoDB for fast progress tracking
Implementation:
// Enroll user (PostgreSQL transaction)
async function enrollUser(userId: number, courseId: number) {
await db.transaction(async (trx) => {
// Check if already enrolled
const existing = await trx("enrollments")
.where({ userId, courseId })
.first();
if (existing) throw new Error("Already enrolled");
// Create enrollment
await trx("enrollments").insert({ userId, courseId });
// Initialize progress in MongoDB
await mongo.collection("progress").insertOne({
userId,
courseId,
completedLessons: [],
currentLesson: null,
quizScores: {},
notes: [],
lastActivity: new Date(),
});
});
}
// Track progress (MongoDB only)
async function completeLesson(
userId: number,
courseId: number,
lessonId: string
) {
await mongo.collection("progress").updateOne(
{ userId, courseId },
{
$addToSet: { completedLessons: lessonId },
$set: { lastActivity: new Date() },
}
);
}My Decision Framework
Here's the systematic process I follow:
Step One: Analyze Your Data Relationships
Ask yourself:
- Do entities have clear relationships? (users → orders → items)
- Will I need to query across these relationships?
- Is referential integrity important?
If yes to most: PostgreSQL
// PostgreSQL shines here
SELECT
u.name,
COUNT(DISTINCT o.id) as order_count,
SUM(oi.quantity * oi.price) as total_spent
FROM users u
LEFT JOIN orders o ON u.id = o.user_id
LEFT JOIN order_items oi ON o.id = oi.order_id
WHERE u.created_at > NOW() - INTERVAL '1 year'
GROUP BY u.id, u.name
HAVING SUM(oi.quantity * oi.price) > 1000
ORDER BY total_spent DESC;If no: MongoDB might work
// MongoDB works here
interface User {
_id: ObjectId;
name: string;
purchases: Array<{
orderId: string;
items: Array<{
productId: string;
quantity: number;
price: number;
}>;
total: number;
date: Date;
}>;
}Step Two: Consider Your Query Patterns
PostgreSQL excels at:
- Complex joins across tables
- Aggregations with grouping
- Full-text search (with extensions)
- Analytical queries
- Data warehousing
MongoDB excels at:
- Reading entire documents
- Simple queries on indexed fields
- Aggregation pipelines
- Geospatial queries
- Text search on flexible schemas
Example comparison:
// PostgreSQL: Complex join query
const result = await db.query(`
SELECT
c.name as category,
COUNT(p.id) as product_count,
AVG(r.rating) as avg_rating
FROM categories c
LEFT JOIN products p ON c.id = p.category_id
LEFT JOIN reviews r ON p.id = r.product_id
GROUP BY c.id, c.name
HAVING AVG(r.rating) > 4.0
`);
// MongoDB: Aggregation pipeline
const result = await db
.collection("products")
.aggregate([
{
$lookup: {
from: "reviews",
localField: "_id",
foreignField: "productId",
as: "reviews",
},
},
{
$group: {
_id: "$category",
productCount: { $sum: 1 },
avgRating: { $avg: "$reviews.rating" },
},
},
{
$match: { avgRating: { $gt: 4.0 } },
},
])
.toArray();PostgreSQL version is more readable and performant for this use case.
Step Three: Evaluate Schema Stability
How often does your schema change?
Stable schema (rare changes):
-- PostgreSQL: Well-defined schema
CREATE TABLE products (
id SERIAL PRIMARY KEY,
name VARCHAR(255) NOT NULL,
price DECIMAL(10, 2) NOT NULL,
stock INTEGER NOT NULL,
created_at TIMESTAMP DEFAULT NOW()
);
-- Changes require migrations
ALTER TABLE products ADD COLUMN description TEXT;Evolving schema (frequent changes):
// MongoDB: Flexible schema
interface Product {
_id: ObjectId;
name: string;
price: number;
// Easy to add new fields
description?: string;
tags?: string[];
customAttributes?: Record<string, any>;
}My rule: If you're adding/changing fields weekly, consider MongoDB. If changes are monthly or less, PostgreSQL's migrations are fine.
Step Four: Transaction Requirements
Do you need ACID transactions?
Critical transactions (use PostgreSQL):
- Financial operations
- Inventory management
- Multi-step workflows
- Data consistency is critical
Example:
BEGIN;
-- Deduct inventory
UPDATE products SET stock = stock - 1 WHERE id = 123 AND stock > 0;
-- Create order
INSERT INTO orders (user_id, product_id) VALUES (456, 123);
-- If either fails, both rollback
COMMIT;MongoDB transactions exist but have limitations:
const session = client.startSession();
try {
await session.withTransaction(async () => {
await products.updateOne(
{ _id: productId, stock: { $gt: 0 } },
{ $inc: { stock: -1 } },
{ session }
);
await orders.insertOne({ userId, productId }, { session });
});
} finally {
await session.endSession();
}MongoDB transactions:
- Require replica set (more complex setup)
- Performance overhead
- Less mature than PostgreSQL
For critical transactions, PostgreSQL is the safer choice.
Step Five: Scaling Considerations
Vertical vs Horizontal scaling:
PostgreSQL:
- Scales vertically very well (bigger servers)
- Read replicas for read scaling
- Partitioning for large tables
- Can handle TBs of data on a single instance
MongoDB:
- Designed for horizontal scaling (sharding)
- Automatic data distribution
- Better for globally distributed data
- Easier to add capacity on demand
My experience:
// PostgreSQL handled this just fine on a single server
// 50M users, 500M transactions, 2TB data
const users = await db.query(
`
SELECT * FROM users WHERE id = $1
`,
[userId]
);
// MongoDB sharded across 5 servers
// 100M documents, flexible schema, global distribution
const events = await db
.collection("events")
.find({
userId: userId,
})
.toArray();Reality check: Most applications never need horizontal scaling. PostgreSQL's vertical scaling goes very far.
Performance Considerations
Let me bust some myths with actual benchmarks from my projects.
Myth: MongoDB is Always Faster
Not true. It depends on the query.
Simple read by ID:
// MongoDB: ~1ms
await db.collection("users").findOne({ _id: userId });
// PostgreSQL: ~1ms
await db.query("SELECT * FROM users WHERE id = $1", [userId]);Winner: Tie
Complex aggregation:
// MongoDB: ~150ms
await db
.collection("orders")
.aggregate([
{ $match: { createdAt: { $gte: startDate } } },
{
$lookup: {
from: "users",
localField: "userId",
foreignField: "_id",
as: "user",
},
},
{ $unwind: "$items" },
{
$group: {
_id: "$items.productId",
totalSold: { $sum: "$items.quantity" },
},
},
]);
// PostgreSQL: ~50ms
await db.query(
`
SELECT product_id, SUM(quantity) as total_sold
FROM orders o
JOIN order_items oi ON o.id = oi.order_id
WHERE o.created_at >= $1
GROUP BY product_id
`,
[startDate]
);Winner: PostgreSQL (optimized for joins and aggregations)
Write performance:
// MongoDB: ~0.5ms per insert (async acknowledgment)
await db.collection("logs").insertOne(logEntry);
// PostgreSQL: ~2ms per insert (synchronous)
await db.query("INSERT INTO logs (...) VALUES (...)", [values]);Winner: MongoDB (for high-volume writes)
Real Performance Tips
PostgreSQL:
-- Add indexes
CREATE INDEX idx_users_email ON users(email);
CREATE INDEX idx_orders_user_id ON orders(user_id);
CREATE INDEX idx_orders_created_at ON orders(created_at);
-- Use EXPLAIN ANALYZE
EXPLAIN ANALYZE SELECT * FROM orders WHERE user_id = 123;
-- Optimize with partial indexes
CREATE INDEX idx_active_orders ON orders(user_id)
WHERE status = 'active';MongoDB:
// Add indexes
await db.collection("users").createIndex({ email: 1 }, { unique: true });
await db.collection("orders").createIndex({ userId: 1, createdAt: -1 });
// Compound indexes for common queries
await db.collection("products").createIndex({
category: 1,
price: 1,
rating: -1,
});
// Use explain
const explain = await db
.collection("orders")
.find({ userId: 123 })
.explain("executionStats");Common Mistakes I've Seen
Mistake One: Using MongoDB as a Relational Database
Don't do this:
// Anti-pattern: Mimicking joins in application code
const user = await db.collection("users").findOne({ _id: userId });
const orders = await db
.collection("orders")
.find({ userId: user._id })
.toArray();
const products = await db
.collection("products")
.find({
_id: { $in: orders.flatMap((o) => o.productIds) },
})
.toArray();
// Now merge in application code... 😱Do this instead:
// Use PostgreSQL if you need joins
const result = await db.query(
`
SELECT u.*, o.*, p.*
FROM users u
LEFT JOIN orders o ON u.id = o.user_id
LEFT JOIN order_products op ON o.id = op.order_id
LEFT JOIN products p ON op.product_id = p.id
WHERE u.id = $1
`,
[userId]
);Or embed in MongoDB:
// Embed if data is frequently accessed together
interface User {
_id: ObjectId;
email: string;
orders: Array<{
orderId: string;
items: Array<{
productId: string;
name: string;
price: number;
}>;
}>;
}Mistake Two: Using PostgreSQL Without Proper Indexes
Don't do this:
-- Slow query without index
SELECT * FROM users WHERE email = 'user@example.com';
-- Scans entire table
SELECT * FROM orders WHERE user_id = 123 AND status = 'pending';
-- Scans all ordersDo this:
CREATE INDEX idx_users_email ON users(email);
CREATE INDEX idx_orders_user_status ON orders(user_id, status);
-- Now queries are fast
EXPLAIN ANALYZE SELECT * FROM users WHERE email = 'user@example.com';
-- Index Scan using idx_users_emailMistake Three: Not Understanding MongoDB's Limitations
MongoDB doesn't have:
// No foreign key constraints
// This insert succeeds even if userId doesn't exist
await db.collection("orders").insertOne({
userId: 999999, // Non-existent user
total: 100,
});
// No JOIN support (use $lookup, but it's slower)
// No multi-document ACID transactions (without replica set)
// No strong consistency by defaultIf you need these features, use PostgreSQL.
Migration Stories
From MongoDB to PostgreSQL
A real project: An inventory management system started with MongoDB.
The problem:
// Race condition: Multiple processes updating stock
const product = await db.collection("products").findOne({ _id: productId });
if (product.stock >= quantity) {
await db
.collection("products")
.updateOne({ _id: productId }, { $inc: { stock: -quantity } });
// Another process might have decremented in between!
}The solution: Migrated to PostgreSQL
-- Atomic operation with constraint
BEGIN;
UPDATE products
SET stock = stock - 5
WHERE id = 123 AND stock >= 5;
-- Fails if stock insufficient
COMMIT;Result: Zero inventory discrepancies after migration.
From PostgreSQL to MongoDB
A real project: A CMS with rigid PostgreSQL schema.
The problem:
-- Every new content type required schema changes
ALTER TABLE posts ADD COLUMN video_url TEXT;
ALTER TABLE posts ADD COLUMN video_duration INTEGER;
ALTER TABLE posts ADD COLUMN podcast_url TEXT;
-- Endless migrations...The solution: Migrated to MongoDB
// Flexible content structure
interface Post {
_id: ObjectId;
title: string;
author: string;
content: {
type: string;
// Any additional fields
[key: string]: any;
};
}Result: New content types without database changes.
My Recommendation Matrix
Here's a quick reference guide:
Choose PostgreSQL for:
- E-commerce platforms
- Financial applications
- SaaS with multi-tenancy
- Data warehouses
- Applications with complex relationships
- When data integrity is critical
- When you need mature ecosystem
- When team knows SQL
Choose MongoDB for:
- Content management systems
- Catalogs with flexible schemas
- Real-time applications
- Event logging and analytics
- IoT data collection
- When schema evolves frequently
- When horizontal scaling is critical
- When team prefers JSON/JavaScript
Use Both for:
- Large applications with diverse needs
- Transactional data (PostgreSQL) + Flexible data (MongoDB)
- OLTP (PostgreSQL) + OLAP (MongoDB)
- Critical data (PostgreSQL) + Logs/metrics (MongoDB)
Practical Migration Path
If you're stuck with the wrong choice, here's how to migrate:
From MongoDB to PostgreSQL
// 1. Design PostgreSQL schema
// 2. Create migration script
import { MongoClient } from "mongodb";
import { Pool } from "pg";
const mongo = new MongoClient(mongoUrl);
const pg = new Pool({ connectionString: pgUrl });
// 3. Migrate data in batches
const cursor = mongo.db().collection("users").find();
const batch = [];
for await (const doc of cursor) {
batch.push({
id: doc._id.toString(),
email: doc.email,
name: doc.name,
created_at: doc.createdAt,
});
if (batch.length >= 1000) {
await pg.query(
"INSERT INTO users (id, email, name, created_at) VALUES ...",
batch
);
batch.length = 0;
}
}
// 4. Verify data integrity
// 5. Switch application code
// 6. Keep MongoDB as backup for rollbackFrom PostgreSQL to MongoDB
// 1. Design MongoDB schema (embedded vs referenced)
// 2. Create migration script
import { Pool } from "pg";
import { MongoClient } from "mongodb";
const pg = new Pool({ connectionString: pgUrl });
const mongo = new MongoClient(mongoUrl);
// 3. Migrate with proper embedding
const result = await pg.query(`
SELECT
u.*,
json_agg(o.*) as orders
FROM users u
LEFT JOIN orders o ON u.id = o.user_id
GROUP BY u.id
`);
for (const row of result.rows) {
await mongo
.db()
.collection("users")
.insertOne({
_id: row.id,
email: row.email,
name: row.name,
orders: row.orders || [],
});
}Conclusion: It's About Trade-offs
There's no universal winner. Both databases are excellent tools for different jobs.
PostgreSQL wins when:
- Data relationships are complex
- Integrity is non-negotiable
- Queries involve joins and aggregations
- Schema is stable
- ACID transactions are critical
MongoDB wins when:
- Schema flexibility is crucial
- Write volume is very high
- Data is hierarchical or document-oriented
- Horizontal scaling is needed early
- Team prefers JavaScript/JSON
My default: Start with PostgreSQL unless you have a specific reason to use MongoDB. PostgreSQL's flexibility (JSONB columns, extensions) covers most MongoDB use cases while maintaining relational integrity.
The best choice: The one that matches your actual requirements, not the one that's trending on Twitter.
What database are you using? Let me know in the comments which scenarios you'd add to this guide.